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RENORMALIZATIONS OF CIRCLE HOMEOMORPHISMS WITH A
BREAK POINT∗

AKHTAM DZHALILOV1, ABDUMAJID BEGMATOV2

Abstract. Let fθ(x) = F0(x)+θ (mod1), x ∈ S1, θ ∈ [0, 1] be a family of preserving orientation

circle homeomorphisms with a single break point xb, i.e. with a jump in the first derivative F0

at the point x = xb. Suppose that F ′0(x) is absolutely continuous on [xb, xb + 1] and F ′′0 (x) ∈
Lα([0, 1]) for some α > 1. Consider fθ with rational rotation number ρθ = p

q
of rank n, i.e.

p
q

= [k1, k2, ..., kn]. We prove that for sufficiently large n, the renormalizations of fθ is close to

certain convex linear-fractional functions in C1+L1
.
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1. Introduction

Circle homeomorphisms constitute one important class of one-dimensional dynamical systems.
The investigation of their properties was initiated by Poincaré [7], who came across them in his
studies of differential equations more than a century ago. Since then interest in these maps never
diminished. Circle maps are also important because of their applications to natural sciences (see
for instance [2]).

We identify the unit circle S1 = R1/Z1 with the half open interval [0, 1). Consider the one-
parameter families of the orientation preserving circle homeomorphisms

fθ(x) = F0(x) + θ (mod1), x ∈ S1, θ ∈ [0; 1], (1)

where the initial lift F0 : R1 → R1 satisfies the following conditions:
(a) F0 is continuous and strictly increasing on R1;
(b) F0(0) = 0, F0(x + 1) = F0(x) + 1, x ∈ R1;
(c) there is a point xb ∈ S1 such that the one-sided derivatives F ′

0(xb± 0) exist, are positive and
F ′

0(xb − 0) 6= F ′
0(xb + 0);

(d) F ′
0 is absolutely continuous and strictly positive on [xb, xb + 1];

(e) F ′′
0 ∈ Lα([0; 1], d`) for some α > 1, where ` is Lebesque measure on the circle.

The conditions (d) and (e) are called the Katznelson and Ornstein’s smoothness conditions.
The point xb is called a break point of fθ. The ratio

σ(xb) =

√
F ′

0(xb − 0)
F ′

0(xb + 0)
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is called the jump ratio of fθ at xb or, for short, fθ-jump ratio. Notice that the parameter
σ = σ(xb) is obviously an invariant under smooth coordinate transformations and characterizes
the type of the singularity.

Put Fθ = F0 + θ, θ ∈ [0, 1]. The rotation number ρθ of fθ is defined by (see [1] for details)

ρθ = lim
n→∞

Fn
θ (x)
n

(mod1),

where the limit exists for all x ∈ R1 and is independent of x. Here and later, Fn denotes the
n− th iteration of F.

The familes like

Aθ(x) = x +
c

2π
sin(2πx) + θ (mod1)

were studied for various constants c. For c < 1 the maps are diffeomorphisms and there is a
result in [3], which says that the rotation number is absolutely continuous as a function of θ.

When c > 1 the maps are non homeomorphisms and have no rotation number. In this case,
both endpoints of rotation interval are rational almost everywhere w.r.t Lebesgue measure.
Notice that the results are quite different if the family (1) has singularity points. Swiatek in [8]
studied the family (1) with several critical points. It is proved that the set of parameter values
corresponding to irrational rotation numbers has Lebesgue measure zero. In other words, the
intervals on which frequency-locking occurs fill up the set of full measure. Khanin and Vul in [6]
studied renormalizations and rational rotation numbers of the family (1) with single break point
xb such that fθ ∈ C2+ε(S1\{xb}). On one hand, the set of the parameter values corresponding to
irrational rotation numbers has a zero measure, and the dynamics is characterized by nontrivial
scaling transformations. On the other hand, similar to the case of circle diffeomorphisms (see
[5]), the renormalizations group behavior of such maps is rather simple. In the renormalized
coordinates, the iterations of fθ approximated to linear-fractional transformations in the norm
‖ · ‖C2(S1\{xb}) (see [6]).

In this paper, our purpose is to study the family (1) with a single point, but with a weaker
smoothness condition for fθ.

It is easy to see that ρθ is the increasing function of θ. Note that for each rational number a

the set I(a) = {θ : ρθ = a} is a nontrivial closed interval and I(a) consists of only one point if
a is irrational.

The main idea of the renormalization group method is to study large time iterates of the
original mappings in a rescaled coordinate system corresponding to some neighborhood of a given
point. Let p

q ∈ [0, 1] be an arbitrary rational number of rank n, i.e p
q = [k1, k2, ..., kn], kn >

1. Since the rank of p
q equals n we put pn := p and qn := q. Let us fix some θ ∈ I(pn

qn
)

and denote F = Fθ and f = fθ (we omit the parameter θ in the sequel). Let Of (t, qn) =
{f i(t), i = 0, 1, ..., qn − 1} be an arbitrary periodic orbit of f of period qn. Denote by [y1, y2]
the closed interval formed by two consecutive points of orbit Of (t, qn) and containing the break
point xb of f. We introduce the renormalized coordinate z on [y1, y2] given by the formula
z = (x − y2)/(y1 − y2). It is clear that the normalized coordinate z changes from 1 to 0, when
x is moving from y1 to y2. Denote by d the renormalized coordinate of break point xb, i.e.
d = (xb − y2)/(y1 − y2).

Now, we define the function f̄ρ,n corresponding to F qn in this new coordinate by:

f̄ pn
qn

,n(z) =
F qn(y2 + z(y1 − y2))− y2 − pn

y1 − y2
, z ∈ [0, 1]. (2)
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The least map is called n− th renormalization of f on the interval [y1, y2]. Next, we define the
piecewise fractional-linear function Gd,n on [0, 1] by the formula:

Gd,n(z) =

{
σz

(σ−1)z+d(1−σ2)+σ2 , if z ∈ [0, d],
σ2z+d(1−σ2)

σ(σ−1)z+d(1−σ2)+σ
, if z ∈ (d, 1].

(3)

The main purpose of our paper is to prove the following:

Theorem 1.1. Let
{

fθ : θ ∈ [0, 1]
}

be the family of circle homeomorphisms defined by (1)
with the initial lift F0 satisfying the conditions (a)-(e). Then, for any ε > 0 there exists N =
N(ε, F0) > 0 (which doesn’t depend on choice of periodic orbit), such that if f belongs to this
family and its rotation number ρ = pn

qn
is rational with rank n, n > N the following estimates

hold:
‖f̄ρ,n −Gd‖C([0,1]) ≤ ε, ‖f̄ ′′ρ,n −G′′

d‖L1([0,1], d`) ≤ ε.

Remark 1.1. Using the assertions of Theorem 1.1 it can easily be shown that

sup
z∈[0,1]\{d}

|f̄ ′ρ,n −G′
d| ≤ ε.

2. Dynamical partitions of circle homeomorphisms

with rational rotation number

Let f be an orientation preserving homeomorphism of the circle with rational rotation number
ρ = pn

qn
= [k1, k2, ..., kn]. For 1 ≤ m ≤ n denote by pm

qm
= [k1, k2, ..., km], the convergent of pn

qn
.

Their denominators qm satisfy qm+1 = km+1qm + qm−1, 1 ≤ m ≤ n− 1, q0 = 1, q1 = k1. Since
the rotation number ρ = pn

qn
is rational homeomorphism f has at least one periodic orbit of

period qn (see [1]). Let Of (t, qn) = {f i(t), i = 0, 1, ..., qn − 1} be a periodic orbit of f of period
qn. For an arbitrary point x0 ∈ Of (t, qn), denote by ∆(m)

0 (x0) the closed interval with endpoints
x0 and xqm = f qmx0, 0 ≤ m ≤ n − 1. If m is odd then xqm is to the left of x0, and to the
right of x0 if m is even. Denote by ∆(m)

i (x0) the iterates of the interval ∆(m)
0 (x0) under f :

∆(m)
i (x0) = f i∆(m)

0 (x0), i ≥ 1, 0 ≤ m ≤ n − 1. It is well known that each of the following
system of intervals

ξm(x0) =
{

∆(m−1)
i (x0), 0 ≤ i < qm; ∆(m)

j (x0), 0 ≤ j < qm−1

}
, 1 ≤ m < n,

ξn(x0) =
{

∆(n−1)
i (x0), 0 ≤ i < qn

}

cover the whole circle and that their interiors are mutually disjoint. The partition ξm(x0)
is called the mth dynamical partition of the point x0. We briefly recall the structure of the
dynamical partitions. The passage from ξm(x0) to ξm+1(x0), 1 ≤ m < n− 2 is simple: namely,
all intervals of rank m are preserved and each of the intervals ∆(m−1)

i (x0), 0 ≤ i < qm, is divided
into (km+1 + 1) intervals: ∆(m−1)

i (x0) = ∆(m+1)
i (x0) ∪

⋃km+1−1
s=0 ∆(m)

i+qm−1+sqm
(x0). Note that the

endpoints of intervals ∆(n−1)
i (x0), 0 ≤ i ≤ qn − 1 are periodic points of f of period qn. Also

each interval of partition ξn(x0) is periodic of period qn. The following lemma plays a key role
for studying metrical properties of the homeomorphism f .

Lemma 2.1. Let f be a circle homeomorphism with lift F and rational rotation number ρf = pn

qn

of rank n. Let the finite derivatives F ′(xb ± 0) > 0 exist and let F ∈ C1([xb, xb + 1]) and
var[xb,xb+1] log F ′ = v̄ < ∞. We write

v = v̄+ | log F ′(xb − 0)− log F ′(xb + 0) |= v̄ + 2 log σ(xb).



A. DZHALILOV, A. BEGMATOV: RENORMALIZATIONS OF CIRCLE ... 57

In this case, the inequality

e−v ≤
qk−1∏

s=0

F ′(xs) ≤ ev (4)

holds for any 1 ≤ k ≤ n and x0 ∈ S1 such that xi 6= xb, i = 0, 1, 2, ..., n.

The last inequality is called the Denjoy inequality. The proof of Lemma 2.1 is just like that
of the similar assertion for diffeomorphism (see for instance [5]). Using Lemma 2.1 it can easily
be shown that the lengths of the intervals of the dynamical partition ξn are exponentially small.

Corollary 2.1. Suppose that ∆(k) ⊂ ∆(l) ∈ ξl(x0), ∆(k) ∈ ξk(x0), 1 ≤ l < k ≤ n. Then for some
constant M0 > 0

l(∆(k)) ≤ M0λ
k−ll(∆(l)), (5)

where λ = (1 + e−2v)−1/2 < 1.

3. Proof of Theorem 1.1

Consider the dynamical partition generated by periodic orbit Of (t, qn). By assumption [y1, y2]
is the closed interval formed by two consecutive points of Of (t, qn) and containing the break
point xb. We put x0 = y1. Consider the partition ξn(x0). It is clear that ∆(n−1)

0 (x0) = [y1, y2]
and f qn∆(n−1)

0 (x0) = ∆(n−1)
0 (x0). It follows from Corollary 2.1, that the intervals of the dynam-

ical partition ξn(x0) have exponentially small length, i.e. `(∆(n−1)
0 (x0)) ≤ constλn, λ ∈ (0, 1).

Note that the function f̄ρ,n(z) can be represented as the superposition of two functions, f̄1 and
f̄2, which correspond to the mappings f : ∆(n−1)

0 (x0) → ∆(n−1)
1 (x0), f qn−1 : ∆(n−1)

1 (x0) →
∆(n−1)

qn (x0) = ∆(n−1)
0 (x0), respectively. We introduce relative coordinates zi, i = 0, 1, ..., qn − 1,

in the intervals ∆(n−1)
i (x0)

zi = (f i(x)− f i(y2))/(f i(y1)− f i(y2)), x ∈ ∆(n−1)
0 (x0).

Then the functions f̄1 and f̄2 can be written as

f̄1(z0) =
f(y2 + (y1 − y2)z0)− f(y2)

f(y1)− f(y2)
, (6)

f̄2(z1) =
f qn−1(f(y2)) + (f(y1)− f(y2))z1)− y2

y1 − y2
. (7)

It is clear that f̄ρ,n(z) = f̄2(f̄1(z)). Define the following functions:

g(z1) =
σz1

1 + z1(σ − 1)
, Rd(z0) =

{
z0

σ2(1−d)+d
, if z0 ∈ [0, d],

σ2z0+d(1−σ2)
σ2(1−d)+d

, if z0 ∈ (d, 1].
(8)

We put Mn = exp{
qn−2∑
i=1

∫
∆

(n−1)
i

f ′′(y)
2f ′(y)dy}. From now on we shall denote by K constants that

depend only on the original family fθ. Next, we formulate two necessary lemmas.

Lemma 3.1. For any ε > 0, the following relation holds for sufficiently large n

zqn−1(z1) =
z1Mn exp τn(z1)

1 + z1(Mn exp τn(z1)− 1)
, (9)

where the function τn(z1) and its derivatives satisfies the following inequalities:

max
0≤z1≤1

|τn(z1)| ≤ ε, max
0≤z1≤1

|(z1 − z2
1)τ

′
n(z1)| ≤ ε, (10)
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‖τ ′n(z1)‖L1([0,1], d`) ≤ ε, ‖(z1 − z2
1)τ

′′
n(z1)‖L1([0,1], d`) ≤ ε. (11)

Lemma 3.2. The following estimates hold for sufficiently large n

‖f̄1 −Rd‖C([0,1]) ≤ Kλ
n
β , ‖f̄ ′′1 −R′′

d‖L1([0,1], d`) ≤ Kλ
n
β , (12)

where λ is the same as in Corollary 2.1 and β = α
α−1 .

For an easy flow of our presentation, we shall prove these two Lemmas at the end of this
section. So we continue our proof of Theorem 1.1. It is not hard to show that f̄2(z1) = zqn−1(z1).
Using the last relation and Lemma 3.1, we obtain

‖f̄2(z1)− Mnz1

1 + z1(Mn − 1)
‖C1([0,1]) ≤ ε, (13)

‖f̄ ′′2(z1)− 2Mn(1−Mn)
(1 + z1(Mn − 1))3

‖L1([0,1], d`) ≤ ε. (14)

It is clear that

lnMn =
qn−2∑

i=1

∫

∆
(n−1)
i (x0)

f ′′(y)
2f ′(y)

dy = ln σ −
∫

∆
(n−1)
0 (x0)

f ′′(y)
2f ′(y)

dy −
∫

∆
(n−1)
qn−1 (x0)

f ′′(y)
2f ′(y)

dy. (15)

Thus, we have ∣∣∣∣∣∣∣∣

∫

∆
(n−1)
k (x0)

f ′′(y)
2f ′(y)

dy

∣∣∣∣∣∣∣∣
≤ K‖f ′′‖αλn/β, for, k = 0, qn − 1.

Together with relations (13)-(15) this implies that

‖f̄2 − g‖C1([0,1]) ≤ ε, ‖f̄ ′′2 − g′′‖L1([0,1], d`) ≤ ε.

So, the relation fρ, n(z) = f̄2(f̄1(z)) and Lemma 3.2 imply the proof of Theorem 1.1.

Proof. Lemma 3.1. Denote ai = f i(y1), bi = f i(y2), xi = f i(x), i = 1, 2, ..., qn − 1. Then we
get

zi+1 = (xi+1 − bi+1)/(ai+1 − bi+1). (16)

It is easy to check that

xi+1 = f(xi) = f(ai) + f ′(ai)(xi − ai) +

xi∫

ai

f ′′(y)(xi − y)dy,

bi+1 = f(bi) = f(ai) + f ′(ai)(bi − ai) +

bi∫

ai

f ′′(y)(bi − y)dy,

by definition ai+1 = f(ai). Substituting this into (16) we get

zi+1 = zi(1 + Ai(zi − 1)), i = 1, 2, ..., qn − 1, (17)

where

Ai = −
1

f ′(ai)(xi−ai)

xi∫
ai

f ′′(y)(y − ai)dy + 1
f ′(ai)(bi−xi)

bi∫
xi

f ′′(y)(bi − y)dy

1 + 1
f ′(ai)(bi−ai)

bi∫
ai

f ′′(y)(bi − y)dy

. (18)
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We denote

τn(z1) =
qn−2∑

i=1

ψi,

where

χi =

bi∫

ai

f ′′(y)
2f ′(y)

dy, ψi = −χi − ln
(

1 + Aizi

1 + Ai(zi − 1)

)
, i = 1, 2, ..., qn − 1.

Using (17) we obtain

1− zi+1

zi+1
=

1− zi

zi

1 + Aizi

1 + Ai(zi − 1)
=

1− zi

zi
exp{−χi} exp{−ψi}. (19)

Taking iteration of (19) we get

1− zqn−1

zqn−1
=

1− z1

z1
exp{−

qn−2∑

i=1

χi} exp{−
qn−2∑

i=1

ψi} =
1− z1

z1

1
Mn exp τn(z1)

. (20)

Solving equation (20) with respect to zqn−1 we obtain the relation (9).
Let us estimate τn(z1). First we estimate Ai. Denote by Vi the second term of the denominator

of (18). Since f ′′(x) ∈ Lα([0, 1], d`) applying the Holder inequality we obtain

|Vi| ≤ 1
f ′(ai)(bi − ai)

bi∫

ai

|f ′′(y)|(y − ai)dy ≤ ‖f ′′‖α(bi − ai)
1+ 1

β

f ′(ai)(bi − ai)(1 + β)
≤ K(bi − ai)

1
β . (21)

Analogously, it can be shown that the absolute values of both terms in (18) are not greater than
K(bi − ai)

1
β . Let us recall that [ai, bi] ∈ ξn(x0) and `([ai, bi]) ≤ Kλn, i = 0, 1, ..., qn − 2. This,

together with the expression for Ai imply that |Ai| ≤ Constλ
n
β . Next, we rewrite τn(z1) in the

form

τn(z1) = −
qn−2∑

i=1

χi −
qn−2∑

i=1

ln
(

1 + Aizi

1 + Ai(zi − 1)

)
= − ln Mn −

qn−2∑

i=1

Ai −
qn−2∑

i=1

0(A2
i ). (22)

We estimate the last sum in (22). Note that each term of (18) containing an integral is not

greater than
bi∫
ai

|f ′′(y)|dy. Using the estimate for Ai, it can easily be shown that

qn−2∑

i=1

O(A2
i ) ≤ Kλ

n
β . (23)

We rewrite the second to the last sum in (22) in the following form

qn−2∑

i=1

Ai = −
qn−2∑

i=1

bi∫

ai

f ′′(y)
2f ′(y)

dy −
qn−2∑

i=1


 1

f ′(ai)(xi − ai)

xi∫

ai

f ′′(y)(y − ai)dy − 1
2

xi∫

ai

f ′′(y)
2f ′(y)

dy


−

−
qn−2∑

i=1


 1

f ′(ai)(bi − xi)

bi∫

xi

f ′′(y)(bi − y)dy − 1
2

bi∫

xi

f ′′(y)
2f ′(y)

dy


+ (24)

+
qn−2∑

i=1

Vi

1 + Vi


 1

f ′(ai)(xi − ai)

xi∫

ai

f ′′(y)(y − ai)dy +
1

f ′(ai)(bi − xi)

bi∫

xi

f ′′(y)(bi − y)dy


 .
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The first after the sign of equality sum equals to (− lnMn). Since |Vi| ≤ Kλ
n
β , the last sum is

not greater than Kλ
n
β . Together with relations (22)-(24), the last inequality implies that

τn(z1) = −
qn−2∑

i=1


 1

f ′(ai)(xi − ai)

xi∫

ai

f ′′(y)(y − ai)dy − 1
2

xi∫

ai

f ′′(y)
2f ′(y)

dy


− (25)

−
qn−2∑

i=1


 1

f ′(ai)(bi − xi)

bi∫

xi

f ′′(y)(bi − y)dy − 1
2

bi∫

xi

f ′′(y)
2f ′(y)

dy


 + O(λ

n
β ).

Denote by Sn and S̄n the last two sums in (25) respectively. Then, we show that for any ε > 0,

the following estimates hold for sufficiently large n :

|Sn|, |S̄n| ≤ Kε. (26)

We prove only the estimate for Sn, the one for S̄n is quite similar. Rewrite the sum Sn as

Sn =
qn−2∑

i=1

xi∫

ai

f ′′(y)
f ′(ai)

(
y − ai

xi − ai
− 1

2

)
dy+ (27)

+
qn−2∑

i=1

xi∫

ai


 f ′′(y)

2f ′(ai)f ′(y)

y∫

ai

f ′′(t)dt


 dy ≡ S(1)

n + S(2)
n .

Using the condition f ′′(x) ∈ Lα(S1, d`), α > 1, and the Hölder inequality, it can easily be shown
that

|S(2)
n | ≤ K

qn−2∑

i=1




xi∫

ai

|f ′′(y)|dy




2

≤ Kλ
n
β . (28)

Let us estimate the sum S
(1)
n . Fix an arbitrary ε > 0. Since f ′′(x) ∈ Lα(S1, d`), it can be written

in the form
f ′′(x) = hε(x) + rε(x), x ∈ S1, (29)

where hε(x) is a continuous function on S1 and ‖rε‖L1 < ε. Substituting (29) in expression for
S

(1)
n , we obtain

|S(1)
n | ≤

∣∣∣∣∣∣

qn−2∑

i=1

1
f ′(ai)

xi∫

ai

hε(y)(
y − ai

xi − ai
− 1

2
)dy

∣∣∣∣∣∣
+ (30)

+

∣∣∣∣∣∣

qn−2∑

i=1

1
f ′(ai)

xi∫

ai

rε(y)(
y − ai

xi − ai
− 1

2
)dy

∣∣∣∣∣∣
≡ Pn + Qn.

First, we estimate the sum Pn. Denote by ti the middle of the interval [ai, xi] i.e. ti = xi+ai
2 .

We rewrite the sum Pn in the following form

Pn =

∣∣∣∣∣∣

qn−2∑

i=1

1
f ′(ai)

ti∫

ai

hε(y)(
y − ai

xi − ai
− 1

2
)dy +

qn−2∑

i=1

1
f ′(ai)

xi∫

ti

hε(y)(
y − ai

xi − ai
− 1

2
)dy

∣∣∣∣∣∣
.

Applying the Mean Value Theorem we obtain

Pn =

∣∣∣∣∣∣

qn−2∑

i=1

hε(ξi
1)

f ′(ai)

ti∫

ai

(
y − ai

xi − ai
− 1

2
)dy +

qn−2∑

i=1

hε(ξi
2)

f ′(ai)

xi∫

ti

(
y − ai

xi − ai
− 1

2
)dy

∣∣∣∣∣∣
= (31)
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=
qn−2∑

i=1

xi − ai

16f ′(ai)
|hε(ξi

2)− hε(ξi
1)| ≤

qn−2∑

i=1

xi − ai

16f ′(ai)
ω(λn, hε, [ai, bi]) ≤ K max

1≤i≤qn−2
ω(λn, hε, [ai, bi]),

where ω(λn, hε, [ai, bi]) = sup |hε(ξi
2) − hε(ξi

1)| is the ”modulus of continuity” of hε. Since λ ∈
(0, 1), we have ω(λn, hε) → 0, as n →∝ . Next, we estimate the sum Qn. It is easy to see that

Qn ≤ K

qn−2∑

i=1

xi∫

ai

|rε(y)|dy ≤ K

∫

S1

|rε(y)|dy ≤ Kε.

Hence, the relations in (26) are proved. Then, summing (22)-(26), we obtain the first relation
in (10).

Let us prove the second relation in (10). Note that there exists a constant C2 > 0 such that
the following inequalities hold for all i, i = 1, 2, ..., qn − 2,

1
C2

≤ z1(1− z1)
zi(1− zi)

≤ C2,
1
C2

≤ dzi

dz1
≤ C2. (32)

Notice that the function dψi
dzi

is defined almost everywhere. Using (18), we calculate the derivative
of ψi by zi :

dψi

dzi
=

A2
i −A′i

(1 + Aizi)(1 + Ai(zi − 1))
, (33)

where

A′i =
dAi

dzi
=

dAi

dxi

dxi

dzi
= (bi − ai)

dAi

dxi
,

dAi

dxi
=

1
f ′(ai)(xi−ai)2

xi∫
ai

f ′′(y)(y − ai)dy − 1
f ′(ai)(bi−xi)2

bi∫
xi

f ′′(y)(bi − y)dy

1 + 1
f ′(ai)(bi−ai)

bi∫
ai

f ′′(y)(bi − y)dy

. (34)

Using (23), (28), (32)-(34) we obtain

|(z1 − z2
1)τ

′
n(z1)| =

∣∣∣∣∣(z1 − z2
1)

qn−2∑

i=1

dψi

dzi

dzi

dz1

∣∣∣∣∣ ≤ (35)

≤ K

∣∣∣∣∣∣

qn−2∑

i=1

(zi − z2
i )(bi − ai)




xi∫

ai

f ′′(y)
y − ai

(xi − ai)2
dy −

bi∫

xi

f ′′(y)
bi − y

(bi − xi)2
dy




∣∣∣∣∣∣
+ O(λ

n
β ).

Denote by En the last sum in (35). Using relation (29) we rewrite En in the following form

En =

∣∣∣∣∣∣

qn−2∑

i=1

(zi − z2
i )(bi − ai)




xi∫

ai

hε(y)
y − ai

(xi − ai)2
dy −

bi∫

xi

hε(y)
bi − y

(bi − xi)2
dy




∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

qn−2∑

i=1


zi

xi∫

ai

rε(y)
y − ai

xi − ai
dy − (1− zi)

bi∫

xi

rε(y)
bi − y

bi − xi
dy




∣∣∣∣∣∣
≡ E(1)

n + E(2)
n . (36)

First, we estimate the sum E
(1)
n . Applying the Mean Value Theorem again we get

E(1)
n ≤ K

qn−2∑

i=1

(bi − ai)|hε(ξi
1)− hε(ξi

2)| ≤ (37)
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≤ K

qn−2∑

i=1

(bi − ai)ω(λn, hε) ≤ K max
1≤i≤qn−2

ω(λn, hε, [ai, bi]).

Let us estimate E
(2)
n . It is easy to see that

E(2)
n ≤ 1

2

qn−2∑

i=1




xi∫

ai

|rε(y)|dy +

bi∫

xi

|rε(y)|dy


 ≤ 1

2

∫

S1

|rε(y)|dy <
ε

2
.

This, together with (35)-(37) imply the second relation in (10). Now, we prove the first relation
in (11). Using the same arguments as in (35), we can show that

1∫

0

|τ ′n(z1)|dz1 ≤ (38)

≤ K

1∫

0

∣∣∣∣∣∣

qn−2∑

i=1

(bi − ai)




xi∫

ai

f ′′(y)
y − ai

(xi − ai)2
dy −

bi∫

xi

f ′′(y)
bi − y

(bi − xi)2
dy




∣∣∣∣∣∣
dz1 + O(λ

n
β ).

Using relations (32), it is easy to see that
1∫

0

|τ ′n(z1)|dz1 ≤ (39)

≤ K

qn−2∑

i=1

bi∫

ai

∣∣∣∣∣∣

xi∫

ai

f ′′(y)
y − ai

(xi − ai)2
dy −

bi∫

xi

f ′′(y)
bi − y

(bi − xi)2
dy

∣∣∣∣∣∣
dxi + O(λ

n
β ).

We denote by In the last sum in (39) and estimate it. Using the representation (29), we get

In ≤
qn−2∑

i=1

bi∫

ai

∣∣∣∣∣∣

xi∫

ai

hε(y)
y − ai

(xi − ai)2
dy −

bi∫

xi

hε(y)
bi − y

(bi − xi)2
dy

∣∣∣∣∣∣
dxi+ (40)

+
qn−2∑

i=1

bi∫

ai

∣∣∣∣∣∣

xi∫

ai

rε(y)
y − ai

(xi − ai)2
dy

∣∣∣∣∣∣
dxi +

qn−2∑

i=1

bi∫

ai

∣∣∣∣∣∣

bi∫

xi

rε(y)
bi − y

(bi − xi)2
dy

∣∣∣∣∣∣
dxi.

It can easily be shown that the first sum in (40) is not greater than

max
1≤i≤qn−2

ω(λn, hε, [ai, bi]). (41)

Denote by I
(1)
n the second to the last sum in (40). Applying the Hölder inequality we obtain

I(1)
n =

qn−2∑

i=1

bi∫

ai

∣∣∣∣∣∣
1

(xi − ai)2

xi∫

ai

rε(y)(y − ai)dy

∣∣∣∣∣∣
dxi ≤

≤ K

qn−2∑

i=1

bi∫

ai

(xi − ai)
1
β
−1




xi∫

ai

|rε(y)|α dy




1
α

dxi ≤

≤ K

qn−2∑

i=1




bi∫

ai

|rε(y)|α dy




1
α

(bi − ai)
1
β ≤ K




qn−2∑

i=1

bi∫

ai

|rε(y)|α dy




1
α

≤ Kε
1
α .
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Analogously, it can be shown that the last sum in (40), is also not greater than Kε
1
α . Together

with (38)-(41), this implies the first relation in (11).
Let us prove the second inequality in (11). It is not too hard to show that there exists a

constant C3 > 0 such that for all i, 1 ≤ i ≤ qn − 2

1
C3

≤
1∫

0

|d
2zi

dz2
1

|dz1 ≤ C3. (42)

Note that the function d2ψi

dz2
i

is defined almost everywhere. By differentiating (33) we get

d2ψi

dz2
i

=
2AiA

′
i −A′′i

(1 + Aizi)(1 + Ai(zi − 1))
− 2(A′izi + ai)

1 + Aizi
· dψi

dzi
− (

dψi

dzi
)2, (43)

where

A′′i =
d2Ai

dz2
i

= (bi − ai)2
d2Ai

dx2
i

. (44)

Finally, differentiating (34) gives

d2Ai

dx2
i

=

2
f ′(ai)(xi−ai)2

xi∫
ai

(f ′′(xi)− f ′′(y))(y − ai)dy + 2
f ′(ai)(bi−xi)2

bi∫
xi

(f ′′(xi)− f ′′(y))(bi − y)dy

1 + 1
f ′(ai)(bi−ai)

bi∫
ai

f ′′(y)(y − ai)dy

.

(45)
Using the relations (10), (11), (43) and (45) it can easily be shown that

1∫

0

|(z1 − z2
1)τ

′′
n(z1)|dz1 =

1∫

0

|(z1 − z2
1)

qn−2∑

i=1

[
d2ψi

dz2
i

(
dzi

dz1
)2 +

dψi

dzi

d2zi

dz2
1

]
|dz1 ≤

≤ K

1∫

0

∣∣∣∣∣(z1 − z2
1)

qn−2∑

i=1

(bi − ai)2
d2Ai

dx2
i

∣∣∣∣∣ + Kε ≤

≤ K

1∫

0

∣∣∣∣∣∣
(z1 − z2

1)
qn−2∑

i=1

(
bi − ai

xi − ai

)2
xi∫

ai

[f ′′(xi)− f ′′(y)]
y − ai

xi − ai
dy

∣∣∣∣∣∣
dz1+

+K

1∫

0

∣∣∣∣∣∣
(z1 − z2

1)
qn−2∑

i=1

(
bi − ai

xi − ai

)2
bi∫

xi

[f ′′(xi)− f ′′(y)]
bi − y

bi − xi
dy

∣∣∣∣∣∣
dz1 + Kε.

The proof of the second relation in (11) proceeds now exactly as in the previous case. This
concludes the proof of Lemma 3.1. ¤

Proof. Lemma 3.2. It is easy to check, that

f(x)− f(y2) = f ′(xb + 0)(x− y2) +

y2∫

x

f ′′(y)(y − y2)dy, xb < x < y2,

f(x)− f(xb) = f ′(xb − 0)(x− xb) +

xb∫

x

f ′′(y)(y − xb)dy, y1 < x < xb,
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f(y1)− f(xb) = f ′(xb − 0)(y1 − xb) +

xb∫

y1

f ′′(y)(y − xb)dy,

f(xb)− f(y2) = f ′(xb + 0)(xb − y2) +

y2∫

xb

f ′′(y)(y − y2)dy.

This together with (6) imply that

f̄1(z0) =

{
z0+H1(x)

σ2(1−d)+d+H3+H4
, z0 ∈ [0, d],

σ2z0+d(1−σ2)+H2(x)+H4

σ2(1−d)+d+H3+H4
, z0 ∈ (d, 1],

(46)

where

H1(x) =
1

f ′(xb + 0)(y1 − y2)

y2∫

x

f ′′(y)(y − y2)dy, x ∈ [xb, y2],

H2(x) =
1

f ′(xb + 0)(y1 − y2)

xb∫

x

f ′′(y)(y − xb)dy, x ∈ [y1, xb],

H3 =
1

f ′(xb + 0)(y1 − y2)

xb∫

y1

f ′′(y)(y − xb)dy, H4 =
1

f ′(xb + 0)(y1 − y2)

y2∫

xb

f ′′(y)(y − y2)dy.

Because `(∆(n−1)
0 ) ≤ λn, using the condition (d) and Hölder inequality we find that the relation

|H1(x)| ≤ 1
f ′(xb + 0)(y1 − y2)

y2∫

x

|f ′′(y)(y − y2)|dy ≤ Kλ
n
β (47)

holds for all x ∈ [y1, xb]. Analogously, it can be shown that the following inequalities

|H2(x)|, |H3|, |H4| ≤ Kλ
n
β (48)

for all x ∈ (xb, y2]. Summing (46)-(48), we get the first relation in (12). We have

f̄ ′′1(z0) =
f ′′(y2 + z0(y1 − y2))(y1 − y2)2

f(y1)− f(y2)
=

1
f ′(xb + 0)

f ′′(y2 + z0(y1 − y2))(y1 − y2)
σ2(1− d) + d + H3 + H4

for almost all z0. Since the inequalities

d∫

0

|F ′′
1 (z0)|dz0,

1∫

d

|F ′′
1 (z0)|dz0 ≤ Kλ

n
β

hold, also in the case (47) this proves the second relation in (12). Lemma 3.2 is completely
proved. ¤
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